
PRINCIPLES OF OPERATING SYSTEMS

LECTURE 9
Principles of

Operating Systems
CPU SCHEDULING ALGORITHMS

(FCFS AND SJF)

Scheduling Policies

 First-Come First-Serve (FCFS)
 Shortest Job First (SJF)

 Non-preemptive
 Pre-emptive

First Come First Serve (FCFS)
Scheduling
 Policy: Process that requests the CPU FIRST

is allocated the CPU FIRST.
 FCFS is a non-preemptive algorithm.

 Implementation - using FIFO queues
 incoming process is added to the tail of the queue.
 Process selected for execution is taken from head of

queue.

 Performance metric - Average waiting time in
queue.

 Gantt Charts are used to visualize schedules.

First-Come, First-Served(FCFS)
Scheduling
 Example

Process Burst Time
P1 24
P2 3
P3 3

 Suppose the arrival
order for the processes
is

 P1, P2, P3

 Waiting time
 P1 = 0;
 P2 = 24;
 P3 = 27;

 Average waiting time
 (0+24+27)/3 = 17

 Average completion time
 (24+27+30)/3 = 27

0 24 27 30

P1 P2 P3

Gantt Chart for Schedule

FCFS Scheduling (cont.)

 Example

Process Burst Time
P1 24
P2 3
P3 3

 Suppose the arrival order
for the processes is

 P2, P3, P1

 Waiting time
 P1 = 6; P2 = 0; P3 = 3;

 Average waiting time
 (6+0+3)/3 = 3 , better..

 Average waiting time
 (3+6+30)/3 = 13 , better..

 Convoy Effect:
 short process behind long process,

e.g. 1 CPU bound process, many
I/O bound processes.

0 3 6 30

P1P2 P3

Gantt Chart for Schedule

Shortest-Job-First(SJF) Scheduling
 Associate with each process the length of its next

CPU burst.
 Use these lengths to schedule the process with

the shortest time.
 Two Schemes:

 Scheme 1: Non-preemptive
 Once CPU is given to the process it cannot be preempted

until it completes its CPU burst.
 Scheme 2: Preemptive

 If a new CPU process arrives with CPU burst length less
than remaining time of current executing process, preempt.
Also called Shortest-Remaining-Time-First (SRTF)..

SJF and SRTF (Example)

Process Arrival TimeBurst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

0 8 16

P1 P2P3

Gantt Chart for Schedule

P4

127

Average waiting time =
(0+6+3+7)/4 = 4

Non-Preemptive SJF Scheduling

0 7 16

P1 P2P3

Gantt Chart for Schedule

P4

115

Average waiting time =
(9+1+0+2)/4 = 3

P2 P1

2 4

Preemptive SJF Scheduling

SJF/SRTF Discussion
 SJF/SRTF are the best you can do at minimizing average

response time
 Provably optimal (SJF among non-preemptive, SRTF among

preemptive)
 Since SRTF is always at least as good as SJF, focus on SRTF

 Comparison of SRTF with FCFS and RR
 What if all jobs the same length?

 SRTF becomes the same as FCFS (i.e. FCFS is best can do if all jobs
the same length)

 What if jobs have varying length?
 SRTF (and RR): short jobs not stuck behind long ones

 Starvation
 SRTF can lead to starvation if many small jobs!
 Large jobs never get to run

SRTF Further discussion
 Somehow need to predict future

 How can we do this?
 Some systems ask the user

 When you submit a job, have to say how long it will take
 To stop cheating, system kills job if takes too long

 But: Even non-malicious users have trouble predicting runtime of their
jobs

 Bottom line, can’t really know how long job will take
 However, can use SRTF as a yardstick

for measuring other policies
 Optimal, so can’t do any better

 SRTF Pros & Cons
 Optimal (average response time) (+)
 Hard to predict future (-)
 Unfair (-)

Determining Length of Next CPU
Burst
 One can only estimate the length of burst.
 Use the length of previous CPU bursts and

perform exponential averaging.
 tn = actual length of nth burst

 n+1 =predicted value for the next CPU burst
 = 0, 0 1
 Define

 n+1 = tn + (1-) n

Exponential Averaging(cont.)

 = 0
 n+1 = n; Recent history does not count

 = 1
 n+1 = tn; Only the actual last CPU burst counts.

 Similarly, expanding the formula:
 n+1 = tn + (1-) tn-1 + …+

(1-)^j tn-j + …
(1-)^(n+1) 0

 Each successive term has less weight than its predecessor.

j

